This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Brazing filler metal (BFM) is available in a variety of different forms, shapes and sizes, such as wire, rod, paste, sheet, foil, preforms and cladding. BFMs are often applied externally, but some of these BFM forms can be applied internally (i.e., inside the component assembly to be brazed like when foil, cladding and solid preform rings are used).
Brazing filler metal (BFM) is available in a variety of different forms, shapes and sizes, such as wire, rod, paste, sheet, foil, preforms and cladding.
A common way to create brazing filler metal (BFM) powder is by melting the raw metallic ingredients for the BFM in a large melting pot using induction heating and then pouring that alloyed liquid metal through a specialized atomization nozzle.
Nickel brazing is unique in the brazing world in that each of the nickel-based brazing filler metals (BFMs) available for use today depends on the use of temperature-lowering ingredients (i.e., temperature-depressants) such as boron, phosphorus and/or silicon to enable the BFM’s usefulness for joining stainless steels and many other superalloys for critical aerospace applications.
Nickel-brazing is unique in the brazing world in that each of the nickel-based brazing filler metals (BFMs) available for use today depends on the use of temperature-lowering ingredients (i.e., temperature-depressants) such as boron, phosphorus and/or silicon to enable the BFM’s usefulness for joining stainless steels and many other superalloys for critical aerospace applications.
How can we prevent the erosion of thin stainless tubes that we need to braze into several through-holes in some thick stainless plates during our furnace brazing operations?
There are a number of very important steps that must be followed in order to ensure good brazing, one of which is that the parts to be joined must be clean before being assembled for brazing.