This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
When large industrial vacuum brazing furnaces begin to produce customer parts that show discoloration instead of a pristine stainless steel finish or joints where the brazing material has refused to flow properly, production is quickly halted. Easy-to-find-and-fix leaks can take the furnace down for a half of a day, and more downtime is likely.
Residual-gas analyzers are finding their way out into the heat-treat shop, primarily for process control and contamination monitoring in vacuum systems.
This article describes the newest achievements in the heat treatment of diesel-engine fuel-injection nozzles made of hot-working tool steel. Different methods of improving surface properties have been applied by means of vacuum carburizing and vacuum nitriding, which is especially suitable for elements characterized by difficult shape geometry such as blind holes. Variable process parameters have been considered in terms of sequence and temperature as well as their influence on surface microstructure, hardness and case-layer uniformity.
Vacuum furnaces are expensive to purchase and operate. By using creative fixturing solutions, manufacturers and repair shops can safely increase the number of parts brazed or heat treated per run, increasing productivity while lowering the cost per unit.
Gears play an essential role in the performance of many products that we rely on in our everyday lives. When we think about gears we generally separate them into two categories - motion-carrying and power-transmission.