This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies
By closing this message or continuing to use our site, you agree to our cookie policy. Learn More
This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Industrial Heating logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Industrial Heating logo
  • Home
  • Magazine
    • Current Issue
    • Digital Edition
    • Archives
  • News
  • Featured
    • IH Daily
    • IH MagEzine
    • Web Exclusives
    • IH Economic Indicators
    • The History of Industrial Heating
    • Heat Treatment Processes
    • Top 10 Heat-Treated Holiday Gifts
  • Topics
    • Additive Manufacturing / 3D Printing
    • Ceramics & Refractories / Insulation
    • Combustion & Burners
    • Heat Treating
    • Heat & Corrosion Resistant Materials / Composites
    • Induction Heat Treating
    • Industrial Gases & Atmospheres
    • Materials Characterization & Testing
    • Melting / Forming / Joining
    • Process Control & Instrumentation
    • Sintering / Powder Metallurgy
    • Vacuum / Surface Treatments
  • Columns
    • Editorial
    • The Heat Treat Doctor
    • Federal Triangle
    • MTI Profile
    • Academic Pulse
    • Heat Treat 5.0
    • International – Brazil
    • Next-Gen Leaders
  • Directories
    • Equipment Buyers Guide
    • Commercial Heat Treat Capabilities Directory
    • Aftermarket Parts & Services Directory
    • Materials Characterization & Testing Equipment Directory
    • Take a Tour
  • More
    • Classifieds
    • White Papers
    • Industrial Heating Bookstore
    • Organizations
    • Market Research
    • Custom Content & Marketing Services
    • FORGE Magazine
  • Multimedia
    • Podcasts
    • Videos
    • Webinars
    • Image Gallery
    • Mobile App
    • eBooks
  • Events
    • Meetings & Trade Shows
    • FNA
    • Heat Treat Show
  • Blog
    • Dan Herring - Heat Treatment
    • David Pye - Metallurgy
    • Dan Kay - Brazing
    • Debbie Aliya - Failure Analysis
    • Thomas Joseph - Intellectual Property
  • Contact
  • Advertise
  • Subscribe
    • Print & Digital Edition Subscriptions
    • eNewsletter
    • Online Registration
    • Customer Service
Home » Blogs » Industrial Heating Experts Speak Blog » Importance of Materials Science in Understanding Failures of Physical Objects
Debbie-aliya-200px
Debbie Aliya is the owner and president of Aliya Analytical, Inc. in Grand Rapids, Mich., and specializes in failure analysis and prevention. She has a BS in Metallurgy and Materials Science from Carnegie Mellon University and an MS in Materials Science and Engineering from Northwestern University. She is also an IMT associate.

Importance of Materials Science in Understanding Failures of Physical Objects

Part 2

111715-aliya-1
Figure 1
November 17, 2015
Debbie Aliya
No Comments
KEYWORDS failure analysis
Reprints

After integrating the concept of the process-structure-property materials triangle that we talked about in Part 1, the next most important concept in materials science for failure analysis of metal and polymeric components is related to structure and its multiple overlapping levels.

Things are different when we get into the nano world, and I don’t have experience in that arena. My working philosophy regarding materials science is related to what I commonly call structural components. We’re talking about components that have to resist mechanical forces in the presence of a constant or variable environment.

So, let’s get to the nitty-gritty of structure. As I said in the first piece, we require concepts that allow us to understand the multiple levels of structure inherent in each component (Figure 1). If we are talking about a solid material as a materials scientist, the finest level of structure that concerns us on a day-to-day basis is the atomic structure. We need to have a basic idea of what an atom is.

The ancient Greek traveler and natural philosopher (they didn’t have scientists back then) Democritus (c. 460-370 BC) was the first to formulate the idea of the atom as the smallest piece of matter that could exist. Here is a quote from Wikipedia’s article (https://en.wikipedia.org/wiki/Democritus) on the early Greek theory of atoms:

“Democritus, along with Leucippus and Epicurus, proposed the earliest views on the shapes and connectivity of atoms. They reasoned that the solidness of the material corresponded to the shape of the atoms involved. Thus, iron atoms are solid and strong with hooks that lock them into a solid; water atoms are smooth and slippery; salt atoms, because of their taste, are sharp and pointed; and air atoms are light and whirling, pervading all other materials.[32]

Using analogies from our sense experiences, he gave a picture or an image of an atom that distinguished them from each other by their shape, their size and the arrangement of their parts. Moreover, connections were explained by material links in which single atoms were supplied with attachments: some with hooks and eyes and others with balls and sockets.[33] The Democritean atom is an inert solid (merely excluding other bodies from its volume) that interacts with other atoms mechanically. In contrast, modern, quantum-mechanical atoms interact via electric and magnetic force fields and are far from inert.”

References 32 and 33 may be found in the Wikipedia link.

This was fascinating to me. Of course I learned that Democritus was the first to have a theory of the atom. But I had been unaware – until researching this post – that he also had a theory of atomic bonds. While it is obvious that his theory neglects the insights of modern physics and quantum mechanics, some aspects of his theory are not so crazy. In fact, we now understand that atoms are not spherical, that the electron clouds that surround the nucleus are not spherical, and the three-dimensional geometry of the electron cloud surrounding the nucleus of the atom is extremely important in determining which other types of atoms will be attracted to a given type of atom.

I'll have more in Part 3.

Blog Topics

Dan Herring - Heat Treatment

David Pye - Metallurgy

Dan Kay - Brazing

Debbie Aliya - Failure Analysis

George Vander Voort - Metallography

Thomas Joseph - Intellectual Property

Recent Comments

business

Dew Point Meter

kindly share your expertise on deformation control....

relationship between retort size and volume of entire air and gas for produce endothermic gas

[No title]

Debbie-aliya-200px
Debbie Aliya is the owner and president of Aliya Analytical, Inc. in Grand Rapids, Mich., and specializes in failure analysis and prevention. She has a BS in Metallurgy and Materials Science from Carnegie Mellon University and an MS in Materials Science and Engineering from Northwestern University. She is also an IMT associate.
You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • Print & Digital Edition Subscriptions
  • eNewsletters
  • Online Registration
  • Subscription Customer Service

More Videos

Popular Stories

ih1119-ht-fig1-900

The Overlooked Efficiency Opportunity: Intelligent Process Cooling

ih1119-htdr-fig1-900

Vacuum Maintenance (part 1)

Editorial 2019: Reed Miller

Noel Nuggets

Industrial Heating Web Exclusives

Steel Mill Powered by Wind

Industrial Heating Industry News

Novelis to Expand, Upgrade Georgia Facility

IH Ipsen 360x184customcontent

Events

December 11, 2019

Linear and Non-Linear Furnace Leak Rates: What’s the Difference?

Determining whether your furnace has a linear or non-linear leak can mean the difference between being back in production in two hours, or two days. It’s important to know the proper steps in determining your true leak rate to decrease unplanned down time as much as possible. 

January 1, 2030

Webinar Sponsorship Information

For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.
View All Submit An Event

Poll

Additive Manufacturing

Has additive manufacturing had any impact on your business?
View Results Poll Archive

Products

Vacuum Heat Treatment Volume I

Vacuum Heat Treatment Volume I

See More Products

The History of Industrial Heating 1000 BC - Present Day


Industrial Heating Employment Marketplace

Industrial Heating

1219IH-cover144x192

2019 December

Check out the December 2019 issue of Industrial Heating, featuring "Metal Additive Manufacturing without Melting", "Furnaces with Tungsten Heating Elements Make High Product Quality Possible", and much more.

View More Create Account
  • Resources
    • List Rental
    • eNewsletter
    • Manufacturing Group
    • News
    • Want More?
    • Featured
    • Product / Event
    • Industry Links
    • Connect
    • Privacy Policy
    • Survey And Sample

Copyright ©2019. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing