This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies
By closing this message or continuing to use our site, you agree to our cookie policy. Learn More
This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Industrial Heating logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Industrial Heating logo
  • Home
  • Magazine
    • Current Issue
    • Digital Edition
    • Archives
  • News
  • Featured
    • IH Daily
    • IH MagEzine
    • Web Exclusives
    • IH Economic Indicators
    • The History of Industrial Heating
    • Heat Treatment Processes
    • Top 10 Heat-Treated Holiday Gifts
  • Topics
    • Additive Manufacturing / 3D Printing
    • Ceramics & Refractories / Insulation
    • Combustion & Burners
    • Heat Treating
    • Heat & Corrosion Resistant Materials / Composites
    • Induction Heat Treating
    • Industrial Gases & Atmospheres
    • Materials Characterization & Testing
    • Melting / Forming / Joining
    • Process Control & Instrumentation
    • Sintering / Powder Metallurgy
    • Vacuum / Surface Treatments
  • Columns
    • Editorial
    • The Heat Treat Doctor
    • Federal Triangle
    • MTI Profile
    • Academic Pulse
    • Heat Treat 5.0
    • International – Brazil
    • Next-Gen Leaders
  • Directories
    • Equipment Buyers Guide
    • Commercial Heat Treat Capabilities Directory
    • Aftermarket Parts & Services Directory
    • Materials Characterization & Testing Equipment Directory
    • Take a Tour
  • More
    • Classifieds
    • White Papers
    • Industrial Heating Bookstore
    • Organizations
    • Market Research
    • Custom Content & Marketing Services
    • FORGE Magazine
  • Multimedia
    • Podcasts
    • Videos
    • Webinars
    • Image Gallery
    • Mobile App
    • eBooks
  • Events
    • Meetings & Trade Shows
    • FNA
    • Heat Treat Show
  • Blog
    • Dan Herring - Heat Treatment
    • David Pye - Metallurgy
    • Dan Kay - Brazing
    • Debbie Aliya - Failure Analysis
    • Thomas Joseph - Intellectual Property
  • Contact
  • Advertise
  • Subscribe
    • Print & Digital Edition Subscriptions
    • eNewsletter
    • Online Registration
    • Customer Service
Home » Blogs » Industrial Heating Experts Speak Blog » Benefits of Heat Treating (Part 1)
Dan-herring

Dan Herring is president of THE HERRING GROUP Inc., which specializes in consulting services (heat treatment and metallurgy) and technical services (industrial education/training and process/equipment assistance). He is also a research associate professor at the Illinois Institute of Technology/Thermal Processing Technology Center. tel: 630-834-3017; e-mail: dherring@heat-treat-doctor.com; web: www.heat-treat-doctor.com

 

Benefits of Heat Treating (Part 1)

November 4, 2008
Daniel H. Herring
2 Comments
Reprints

To fully understand the advantages of heat-treating processes to manufacturing it is important to first understand a fundamental principal of metals – structure. As a molten metal solidifies, the atoms orient themselves into a repetitive pattern that we call a crystal structure. Body-centered cubic (BCC) and face-centered cubic (FCC) are two of the more common crystal structures. Elements such as Aluminum (Al), Chromium (Cr), Copper (Cu), Iron (Fe), Molybdenum (Mo), Nickel (Ni) and Silicon (Si) are a few examples of metals having these crystal structures.

As the crystals form, their structures grow in a uniform pattern in all directions. As the metal cools, these crystals meet newly developing crystals forming grains. The line of intersection between grains is called a grain boundary. These grain boundaries are oriented in a variety of directions since the individual grains all formed independently from one another. These newly formed crystalline structures are held together by the electromagnetic force between the atoms.

If a load is applied to a metal it will cause the metal to deform first by elastic deformation and then, if enough force is applied, by plastic deformation. The strength of the electromagnetic force between atoms determines the yield strength as well as the ultimate tensile strength of the material.

Alloying elements help make metals stronger and more resistant to deformation by strengthening their crystal structures. Adding alloying elements – other metals or non-metallic elements – causes the crystal structure to be rearranged, resulting in increased strength. Iron is a good example since in its unalloyed form it is not as strong as most plastics! By alloying with carbon (C) and manganese (Mn) we make steel, however, which is inherently stronger than iron. And we can heat treat steel to make it even stronger still. This is the secret to making a metal a useful engineering material.

Quick Facts (courtesy of Wikipedia, www.wikipedia.com):

Crystal structure - A unique arrangement of atoms in a metal. A crystal structure is composed of a motif, a set of atoms arranged in a particular way, and a lattice. Motifs are located upon the points of a lattice, which is an array of points repeating periodically in three dimensions. The points can be thought of as forming identical tiny boxes called unit cells that fill the space of the lattice. The lengths of the edges of a unit cell and the angles between them are called the lattice parameters. A crystal's structure and symmetry play a role in determining many of its properties, such as cleavage, electronic band structure and optical properties.

Elastic deformation - The type of deformation that is reversible. Once the forces are no longer applied, the object returns to its original shape

Electromagnetic force - The force that the electromagnetic field exerts on electrically charged particles. It is the electromagnetic force that holds electrons and protons together in atoms and atoms together to make molecules. The electromagnetic force operates via the exchange of messenger particles called photons and virtual photons. The exchange of messenger particles between bodies acts to create the perceptual force whereby instead of just pushing or pulling particles apart, the exchange changes the character of the particles that swap them.

Grain boundary - The interface between two grains in a polycrystalline material. Grain boundaries disrupt the motion of dislocations through a material, so reducing crystallite size is a common way to improve strength, as described by the Hall-Petch relationship. Since grain boundaries are defects in the crystal structure, they tend to decrease the electrical and thermal conductivity of the material. The high interfacial energy and relatively weak bonding in most grain boundaries often makes them preferred sites for the onset of corrosion and for the precipitation of new phases from the solid. They are also important to many of the mechanisms of creep.

Plastic deformation - The type of deformation that is not reversible. An object in the plastic deformation range will first have undergone elastic deformation.

Ultimate tensile strength - The maximum stress a material can withstand when subjected to tension (as opposed to compression or shearing). It is the maximum value on the stress-strain curve at which a material breaks or permanently deforms. Tensile strength is an intensive property and, consequently, does not depend on the size of the test specimen. However, it is dependent on the preparation of the specimen and the temperature of the test environment and material. Tensile strength, along with elastic modulus and corrosion resistance, is an important parameter of engineering materials that are used in structures and mechanical devices.

Yield strength (or yield point) - The stress at which a material begins to deform plastically. Prior to the yield point, the material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible.

Blog Topics

Dan Herring - Heat Treatment

David Pye - Metallurgy

Dan Kay - Brazing

Debbie Aliya - Failure Analysis

George Vander Voort - Metallography

Thomas Joseph - Intellectual Property

Recent Comments

business

Dew Point Meter

kindly share your expertise on deformation control....

relationship between retort size and volume of entire air and gas for produce endothermic gas

[No title]

Dan-herring

Dan Herring is president of THE HERRING GROUP Inc., which specializes in consulting services (heat treatment and metallurgy) and technical services (industrial education/training and process/equipment assistance). He is also a research associate professor at the Illinois Institute of Technology/Thermal Processing Technology Center. tel: 630-834-3017; e-mail: dherring@heat-treat-doctor.com; web: www.heat-treat-doctor.com

 

You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • Print & Digital Edition Subscriptions
  • eNewsletters
  • Online Registration
  • Subscription Customer Service

More Videos

Popular Stories

ih1119-ht-fig1-900

The Overlooked Efficiency Opportunity: Intelligent Process Cooling

ih1119-mcnt-fig1-900

Bringing Machine Learning to Nonmetallic Inclusions in Steelmaking

110719-Sian

Most Powerful Car Ever Produced

ih1119-htdr-fig1-900

Vacuum Maintenance (part 1)

Editorial 2019: Reed Miller

Noel Nuggets

IH Ipsen 360x184customcontent

Events

December 11, 2019

Linear and Non-Linear Furnace Leak Rates: What’s the Difference?

Determining whether your furnace has a linear or non-linear leak can mean the difference between being back in production in two hours, or two days. It’s important to know the proper steps in determining your true leak rate to decrease unplanned down time as much as possible. 

January 1, 2030

Webinar Sponsorship Information

For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.
View All Submit An Event

Poll

Additive Manufacturing

Has additive manufacturing had any impact on your business?
View Results Poll Archive

Products

Vacuum Heat Treatment Volume I

Vacuum Heat Treatment Volume I

See More Products

The History of Industrial Heating 1000 BC - Present Day


Industrial Heating Employment Marketplace

Industrial Heating

1219IH-cover144x192

2019 December

Check out the December 2019 issue of Industrial Heating, featuring "Metal Additive Manufacturing without Melting", "Furnaces with Tungsten Heating Elements Make High Product Quality Possible", and much more.

View More Create Account
  • Resources
    • List Rental
    • eNewsletter
    • Manufacturing Group
    • News
    • Want More?
    • Featured
    • Product / Event
    • Industry Links
    • Connect
    • Privacy Policy
    • Survey And Sample

Copyright ©2019. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing