

Fig. 1. Sectioned cylinder block
Fatigue is a major consideration in the design and performance evaluation of materials, components and structures since 90% of all mechanical failures are attributed to fatigue fractures. This is especially true for motor vehicles and parts. The investigation emphasized that this cost could be significantly reduced by using proper and efficient design and manufacturing. Such studies are necessary to enhance the competitiveness of the vehicle components and their application in the automotive industry. This helps in increasing performance together with more efficient working of the cylinder block to the required higher and more damaging fatigue cycles per hour and focusing on weight reduction due to the need for higher payloads and reduced emissions.
The following areas are important for the design of fatigue-loaded vehicle components in general and for cylinder blocks in particular:
- Loading conditions
- Stress analysis
- Fatigue testing
- Material quality and defects
- Influence from the manufacturing process
- Fatigue assessments

Fig. 2. Different components of the cylinder block
Although compressive stresses will not cause fatigue, compressive loads may result in local tensile stresses. Microcracks may be initially present due to heat treatment. Even in a flow-free metal with highly polished surface and no stress with no stress concentrators, a fatigue crack may form. The fillets of cylinder-block pins are the critical locations of the cylinder block that endure the highest level of stress under service loading.
Microcracks may be generated during induction hardening if quenching is not controlled properly, which will affect the fatigue life of the cylinder block adversely.
The material fatigue strength is determined using a fully reversed bending load applied to a single throw cut from a cylinder block.
- Data are recorded using a strain gauge in a fillet, so the results are in the form of material strength, including effects of process variables.
- Material and process variables: surface finish (grinding, lapping), hardness, microstructure, residual stresses (induction hardening, grinding)
- The cylinder-block material is tested with the correct state of stress, and the predominant engine-failure mode is duplicated exactly. Therefore, the failure criteria can be ignored. Maximum principal stress is used for convenience.
- Results are analyzed using statistical methods to determine the mean strength and the standard deviation.

Fig. 3. Engine for fatigue testing
Bending Fatigue-Test Procedures
Inertial weights are attached to a cylinder-block specimen to create a “tuning fork-like” dynamic system. The system is then excited at resonance so that minimal input energy is required to create alternating bending stresses in the pin and main fillets.The test was modeled after the energy loading. In an engine, the pin fillets experience peak tensile bending stress a few degrees after TDC during the start of the power stroke. Likewise, the main fillets achieve peak tensile bending stress at TDC during the start of the intake stroke due to the inertial loading of the rod and piston.
The test process is as follows.
Setup:Suspend weights from load frame, setup shaker
Preparation:Cut and mark specimen, gauge specimen, install specimen into fixtures
Test:Run calibration curve, calculate test strain levels, set control parameters, run test, visual surface inspection
Analysis:Run SAFL, run cylinder block
Inspection:Metallurgical, geometric
Documentation:Records result

Fig. 4. Strain-gauged cylinder-block sample
The setup only needs to be performed before the first specimen is tested. Then, cycle through the preparation and test stages until all specimens have been tested.
The test setup influences the quality of the results. The test system consists of the cylinder-block specimen, attached weights and suspension arrangement. The stiffness of the test system has a direct effect on the calibration curves, which are run later in the process. Two areas that are believed to have a significant influence on the system stiffness are the weight-suspension technique and the clamping procedure. When the suspension or clamping is incorrect, the shape of the weights can change, which could produce a change in the g-level-to-strain relationship.
Weight Calibration
The inertial weights are suspended from a load frame with adjustable threaded rods and elastic bungee cords. The weights are adjusted until they are level, parallel and the centerlines of the cylinder-block holes are aligned.

Fig. 5. Cylinder-block sample mounted on fixture
Specimens are cut from the test cylinder block so that a full main is on either side of a pin (Fig. 1). Three specimens can be cut from a single rank using every other main-pin-main combination. Either the odd or even pins will be used from a single cylinder block. A source approval test will contain a maximum of 18 specimens, and a production audit will typically contain nine specimens.
Before cutting the cylinder block, mark the pin number and the direction toward the front of the cylinder block on a counterweight by each pin. The specimens should be cut to allow the maximum clamping area on the mains, and the cut should be made perpendicular to the main axis of the cylinder block. An even mix of odd and even pins should be used so that processing issues might be identified during testing.
After the cylinder block is cut, steel stamp the serial number, pin number and forging supplier initials on the end of the main that originally faced the front of the cylinder block. To prevent fretting in the fixtures, be sure to grind off the burrs on the end of the mains, which were created from cutting the specimens.
For more details of the test process or specific calculations, contact the author.

Fig. 6. Close-up of tested cylinder block
Results and Discussion
Induction-hardened cylinder blocks usually have longer fatigue life than the alternative. Fatigue results of induction-hardened and case-hardened cylinder blocks were investigated in this experiment. The good fatigue properties of induction-hardened components mainly depend on high surface hardness and high compressive residual stresses at the surface. The compressive stress at the surface is caused by the volumetric expansion from the martensite transformation and the plastic strains caused by fast cooling.However, high hardness does not mean higher fatigue limit. To utilize high hardness, it is therefore important to use material with high purity to avoid crack and surface roughness. The transition zone between the hardened and unhardened areas must be placed in a region with relatively low stress. Straightening of the induction-hardened cylinder block is necessary. This is because the hardening process is not completed axisymmetric.
Conclusion
1. Using low induction-hardening power and frequency, it appears to be possible to reduce the tensile stress at the core in the investigated cylinder block.2. In spite of this, the transition zone between the hardened and unhardened zones must be placed in a region with relatively low stress.
3. Quenching for the induction-hardening process must be optimized for a given setup to prevent microcracks.
4. Reduction in cutting/testing frequency saved 17 cylinder blocks per month resulted in a $3,000/month total savings.
For more information:Contact Dr. Manikant Paswan, professor, Dept. of Mechanical Engineering, National Institue of Technology, Jamshedpur, INDIA; tel: 09931185530; e-mail: mkpaswan_1@rediffmail.com
Additional related information may be found by searching for these (and other) key words/terms via BNP Media SEARCH at www.industrialheating.com: fatigue, bending, torsion, tensile stress, plastic strain, microcracks, induction