
Fig. 2. Indirect tube-fired burner system
What do you think of when you hear the terminology “combustion controls?” Maybe you would answer with any one or a combination of the following:
- Flame-safeguard control – making sure there is flame present while gas is flowing to the burner
- Temperature control – adjusting the firing rate to maintain the process heat
- Air-fuel-ratio control – maintaining proper burner efficiency
- Process control – adjusting multiple system components such as the burner firing rate, furnace pressure, circulation and exhaust fan rates, and product feed rates to achieve the best production results
Before Considering a New Combustion Controller
Manufacturing owners and managers are continually looking for ways to reduce production costs and increase production rates. With the great technological advances in electronic controllers, the temptation may be to look to the mysterious and magical “black box” as a solution. Sometimes a salesman under pressure to make his quota may reinforce the idea of the fancy electronic control system as a panacea. Unfortunately, the most sophisticated controllers will not fix a poorly designed thermal process.For example, an expensive air-fuel-ratio controller may provide some energy savings in the range of 2-10% over a conventional ratio-control system. The investment could be very large, however, making the payback excruciatingly long. Other actions to get even greater energy savings of 10-50% include:
- Properly selecting heating equipment for the application
- Maintaining and fixing worn-out thermal-process equipment
- Replacing with newer burner designs having higher efficiencies and reduced emissions

Fig. 1. Line-style burner to fit air-duct cross section
Proper Equipment for the Application
Sometimes we accept previously designed equipment without questioning whether it is using the right type of heating package for the application. Whenever the opportunity arises, we should evaluate if there is a heating component that better matches the process and will save energy and reduce emissions. For example, many air heating applications need the heat distributed evenly over a broad area of the air stream. A cylindrically shaped flame in a large duct will not mix well, and any additional duct shapes to force mixing will require more energy. Also, the flame of the inappropriate burner may be quenched and produce high CO emissions. A better solution is a line-style burner geometrically arranged to fit the cross section of the air duct (Fig. 1). Its flame spreads over the airflow area for even heating.Improving heat transfer means less energy goes out the exhaust stack. For metal treating, heat transfer is improved by changing from low to high velocities. The higher velocities also promote temperature uniformity by stirring the air across the volume of the furnace. Alternately, an indirect tube-fired system on a high-temperature furnace can provide heat through radiation that gives excellent heat transfer and uniformity (Fig. 2).

Fig. 3. Energy-loss curve
Maintaining Equipment
Not only must we properly select heating equipment for the application, but once we have it in place and running, we need to maintain it. Here the opportunities for saving energy are great. Many of the maintenance tasks deal with heat containment. For an analogy, think about your own living area. The most expensive home thermostat will not help if you leave the windows open. In high-temperature furnaces, we use radiation as an effective heat-transfer method. Unfortunately, it is also an effective heat-loss method when there are openings in the furnace. In Figure 3, you see the energy-loss curve rises rapidly as you approach the yellow-to-white-hot temperatures. Our goal is to prevent wasting energy by reducing wall losses from damaged insulation, by minimizing air or radiation leaks from damaged door seals and by adjusting dampers for proper furnace pressure. The furnace in Figure 4 shows excessive radiation leaks from a damaged door system. Energy is wasted, and it makes a hot and dangerous work area.
Fig. 4. Damaged furnace door - excessive radiation leaks

Fig. 5. Fuel savings using preheated air
Replace Old Outdated Equipment
In many thermal-processing facilities, it is not uncommon to see combustion equipment that is over 15 years old. Newer burners offer substantial advances in nozzle mixing that can improve heat transfer, and they can reduce emissions that were not regulated or even considered years ago.Higher burner turndown (maximum-to-minimum firing ratio) allows tighter temperature-control regulation. Low turndown systems often must shut off to prevent over-temperature conditions when the process load is at minimum. During the off time, the process may cool too much, requiring excess energy to get back to the original temperature.
A significant method for energy savings is recapturing the heat of the exhaust to preheat the combustion air. The chart in Figure 5 shows savings up to 51%. Air preheating is typically done by adding a heat exchanger to the system. Many new burner designs, however, now integrate the heat exchanger internally to preheat the combustion air.
Ratio Control Methods
Finally, after you have done all the bigger energy-saving steps, it is time to look at improving air-fuel-ratio control. We want to choose a method that suits the process. Why pay extra cost for the ability to characterize the ratio over the full firing rate of a burner if application requires the burner to be at full fire 99% of the time? We also want to consider the energy savings versus the cost. If the payback period is long, there has to be other benefits to justify the project. Finally, we want to make sure we are staying safe. In some cases, changing to lower excess air levels may not be appropriate for particular heating equipment. It could cause incomplete combustion and carbon buildup.In selecting a ratio control method, we first should understand the commonly used methods, their advantages and disadvantages, and learn about the more sophisticated control methods to determine if they are appropriate.

Fig. 6. Simple ratio control using linked valves
The diagram of Figure 6 shows a simple method using linked valves for ratio control. The blower provides combustion air to a butterfly valve whose position is set by an actuator. A linkage rod connects to a characterized fuel-control valve. If the characterized valve is well built, you will be able to make a fairly good adjustment of the ratio over the entire firing rate. However, this method may require regular and seasonal adjustments to keep the air-fuel ratio optimized. Any changes in pressures will also affect the ratio. Advantages are that it is a simple, well-understood method with a low to moderate cost. Disadvantages are that it provides easy access to untrained employees, backlash in the linkage system can cause ratio variations and the system can fail in an unsafe mode.

Fig. 7. Pressure-control system for flow regulation

Fig. 8. Similar to Fig. 6 with electrically adjusted link

Fig. 9. Flow monitoring added to control
Most of the previous methods need well-regulated air and fuel pressures into the control valves. Also, variations of the chamber back pressure may cause shifts to the ratio. In cases where these conditions are not well regulated, then you must add flow monitoring to the control scheme (Fig. 9). The flow sensors provide feedback to the controller that will then make corrections in actuator positions to continuously maintain the correct ratio. Advantages are its precision overall firing rates, and it is a true flow-control method. Disadvantages are that electronic skills are needed for commissioning, a sensor failure could lead to an unsafe condition, and it has a higher cost.
The controller could be a dedicated unit specifically designed for the application or a generic programmable multi-loop unit. It should use cross-limiting for its control scheme or algorithm. This helps to prevent an unsafe burner firing condition by always keeping the fuel set point limited to the lowest value of either firing-rate demand or actual airflow. Likewise, the air set point is set to the highest value of either the demand or fuel flow. Therefore, cross-limiting prevents a fuel-rich ratio on rapid changes in the firing-rate demand signal.
A key factor in successful mass-flow implementation is the choice of the flow sensors. As with any sensor, it must be selected to match the process conditions. It must stand up to the ambient conditions and the pressure, temperatures and contaminants of the process gases. When comparing sensor types, the primary characteristics for good mass-flow ratio control are:
- Turndown – The sensor must be able to handle the range of the burner. Some sensors will drop off to the minimum output signal when the flow drops below a certain range. In ratio control, if this happens on the air sensor before the gas sensor, it could lead to an unsafe gas-rich condition.
- Repeatability – Although accuracy is always good, it is not as important as repeatability in ratio control. During commissioning, any accuracy problems are adjusted when the ratio is programmed at each firing position.
- Response time – If the sensor response time is longer than the control actuators stroke, the system will be unstable and it will be difficult to tune the controller.
- Drift – An electronic system is not maintenance free. The drift rating will determine how often the system will require calibration.

Fig. 10. Summary of sensors
A brief summary of sensors is shown in Figure 10. The column V/M shows V if the sensor is velocity or volume-based and shows M for a true mass-flow sensor. In some types, the turndown shows a range to cover the variety of implementations from manufacturers. For example, an orifice meter with a simple differential-pressure transmitter may only provide a 3:1 turndown, but when the orifice is supplied with a matched “smart” microprocessor system, the turndown can increase to 10:1.
Summary
In the broadest sense, optimizing combustion can refer to controlling the complete thermal-process system. Narrowing down, it can refer to the design of the nozzle in a burner. From the narrowest to the broadest definition, our goal is to achieve the best production results with a system that is safe and reliable. The market directs us to improve efficiency for energy savings and to reduce emissions. It is accomplished best when we evaluate and prioritize the most beneficial actions, whether changes in heating equipment, implementing a maintenance program or adopting a new controller.IHFor more information:Dan Curry is an electronic products engineer for Eclipse, Inc., 1665 Elmwood Rd., Rockford, Ill. 61103; tel: 815-877-3031; fax: 815-637-7049; email: dcurry@eclipsenet.com; web: www.eclipsenet.com
Additional related information may be found by searching for these (and other) key words/terms via BNP Media SEARCH at www.industrialheating.com: emissions, heat transfer, radiation, heat exchanger, controller
Report Abusive Comment