
Fig. 1. Nucor Auburn pusher furnace

Fig. 2. TriOx burner

Fig. 3. TriOx burner temperature profile
Background
Nucor's furnace, built by Forni Industriali Bendotti S.p.A., is a 60-ft long pusher reheat furnace rated for 120 tons/hr with peel bar discharge. It incorporates a recuperator for preheated combustion air to all burners operated via a mass flow control/PLC system.The primary mill products include rebar, merchant bar quality; rounds, squares, flats, angles and channels, as well as special bar quality steels in over 130 sizes of various grades and chemistries and produced from 100% recycled scrap. The reheat furnace replaced an older unit with nominal capacities of 50 tons/hr up to 95 tons/hr with a hot charge and a maximum billet length of only 14 ft.
The new furnace is approximately 42 ft wide and includes a total of 22 TriOx burners divided into four zones of control (Fig. 1). There are six burners in the bottom heat zone side-fired and directly opposed to one another and each rated for a nominal capacity of 12.3 MMBtu/hr with hot air. Similarly, there are six burners above the pass line in the top heat zone also directly opposed and rated at a nominal capacity of 9.6 MMBtu/hr each. Finally, the soak zone is end-fired with a total of ten burners subdivided into two zones of five each with burners rated at a nominal capacity of 2.7 MMBtu/hr each. Further, the furnace height above and below the pass line is 6 ft, 6 in. with the burners offset away from the pass line to promote combustion burnout and reduce scale formation. The furnace design includes provisional ports for four additional burners, two in the top heat and two in the bottom heat zones, to increase furnace capacity in the future. For maximum system efficiency and temperature uniformity, the furnace design includes both top and bottom flues. Typical billet size is 6.25 in. square by 40 ft long. As with most combustion systems, the entire furnace design, including burner placement, is critical for overall heat transfer and combustion system efficiency. With the distributed combustion or Invisiflame® TriOx technology, furnace design can directly influence overall NOx production. The burner's port geometry and placement in the furnace wall is very important to ensure maximum flue gas entrainment into the flame root for maximum NOx reduction.
Prior to beginning this project, a detailed Fluent® Computational Fluid Dynamics (CFD) analysis of the furnace heat zones was conducted. Those results were combined with previous individual burner CFD modeling and experimental laboratory data to calculate heat transfer performance, temperature uniformity, flow and velocity fields, as well as expected NOx emissions (AIST reference).

The geometry of the burner largely dictates the flame structure, efficiency of burning, heat transfer, and NOx formation. The burner features central fuel injection surrounded by multiple levels of carefully controlled air staging to ensure carbon monoxide (CO) burnout and flame stability during cold furnace startups while simultaneously minimizing NOx emissions. Optimal fuel and air inlet port geometries combined with controlled air staging and hot air discharge velocities in the 200 ft/s range cause the flame zone to stretch and entrain large amounts of furnace flue gases. As illustrated in Fig. 3, peak flame temperatures are significantly lower than in conventional combustion techniques with subsequent ultra low NOx emissions achievable even with preheated combustion air. Experimental testing of the burner at high fire and with 2060°F (1127°C) chamber temperatures with preheated combustion air of 800°F (427°C) resulted in NOx emissions of approximately 34 ppmvd at 3% O2(0.037 lbs/MMBtu).

Fig. 4. Temperature profiles
Results
Furnace commissioning took place in April 2005 with an extended dry-out period followed by immediate production. The following data were collected during normal pusher furnace operations:- Load type, size, and weight
- Furnace production rate
- Billet surface temperature at furnace discharge
- Furnace zone temperature set points
- Furnace temperatures
- Natural gas and combustion air flow rates by zone
- Emissions of NOx, CO, and O2
Furnace operational data downloaded at maximum production from the PLC are presented in Table 1.
Furnace outer wall temperatures were also measured for furnace heat losses calculations. Billet surface and centerline temperatures were calculated based on the furnace temperature profile using proprietary heat transfer software and are shown in Fig. 4.
The billet heating process occurs smoothly with a mean rate of 17.7 °F/min. in the middle of the heating zones and 4 °F/min. in the soak zones. The overall furnace design, including burner positioning, port geometry and spacing, provides good furnace temperature uniformity and heat transfer to the metal being heated. Furnace production rates of 140 tons/hr are common despite the original design rating of only 120 tons/hr.Fig. 5. Temperature profile in horizontal plane via burner centerlines.
The preheated combustion air of 827°F (442°C) accounts for about 13% of the total furnace heat input. Furnace wall losses are very low at less than 1% of total heat input. Overall furnace performance is quite good considering the heat absorbed by the steel represents 75% of the heat from fuel input or about 66% of the total heat input if including preheated combustion air. Furthermore, specific fuel consumption of 868,000 Btu/ton is well below the design target of approximately 1 MMBtu/ton.
Emissions, as monitored by the CEM, have remained well below the permitted threshold throughout the furnace operation, including production rates from less than 60 tons/hr to 140 tons/hr, as well as during cold furnace startups following prolonged mill shutdowns. At the maximum production rate of 140 tons/hr reported here, NOx emissions of less than 0.052 lbs/MMBtu were recorded with air preheats exceeding 800°F (427°C). At lower production rates and slightly lower air preheat levels, NOx emissions less than 0.045 lbs/MMBtu were commonly recorded. Furthermore, CO emissions are virtually zero during any operating conditions.Conclusion
Remaining cost competitive in the face of higher fuel and raw material prices, combined with increasing market competition, are the challenges faced by every major steel producer. In the case of Nucor Auburn's pusher reheat furnace, the desired method to achieve these goals included a state-of-the-art furnace, control system, and burners utilizing preheated combustion air while meeting very stringent environmental regulatory requirements. Regulatory requirement for ultra low NOx emissions, as well as Nucor's goals of increasing furnace production, reducing specific fuel consumption, and minimizing scale formation, were ultimately achieved and proven in practice with the application of the Invisiflame® TriOx burner technology. Close collaboration between furnace builder, end customer, and burner supplier combined with state-of-the-art CFD modeling to optimize burner design, placement in the furnace, and burner port geometry have ensured long term success. To date, rolling operations are running smoothly, production rates have exceeded design targets while simultaneously beating specific fuel consumption targets, and NOx emission are well within regulatory requirements.
Additional related information may be found by searching for these (and other) key words/terms via BNP Media LINX at www.industrialheating.com: combustion, heat transfer, low NOx, reheat furnace, billets, modeling
Report Abusive Comment