This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Residual stresses are often observed when metals are quenched from elevated temperatures. Rapid quenching will, in the absence of phase transformations, produce a residual compressive stress on the surface. An imbalance of the internal forces associated with residual stress within a part (tensile and compressive) causes distortion.
A very simple explanation of the formation of residual stress during quenching can be demonstrated by considering two concentric cylinders (see Fig. 1) of equal cross-sectional area (AS=AC). During quenching, the outer shell will shorten faster than the center as a result of a temperature gradient and thermal contraction. This will place the surface in tension and the center in compression while the center is still hot.