Industrial Heating Experts Speak Blog

Introduction to Quantitative Metallography (part 5)

August 3, 2012
/ Print / Reprints /
/ Text Size+

We continue our multi-part discussion of quantitative metallography. We hope this information will be usable by many in their metallurgical investigations.  

Other measurements are possible, but the ones described in previous blogs represent some of the simplest and most useful. Each can be repeated on a number of fields on the “plane of polish” so that a mean and standard deviation can be obtained. The number of fields measured influences the precision of the measurement. Manual measurements are tedious and time-consuming, so sampling statistics may be less than desired. Image analysis removes most of the barriers to inadequate sampling.  

A good measure of statistical precision is the 95% confidence interval (or confidence limit). This defines a range around the mean value where 95 times out of 100 a subsequently determined mean will fall. A mean volume fraction of 10 ±2% implies that in 95 of 100 measurements the mean value will be between 8 and 12%. The 95% confidence interval is determined by:

95% CI = ts/(n)½        

where t is the student’s t factor (t is a function of the confidence level desired and the number of measurements and can be found in standard textbooks and in ASTM standards such as E 562, E 1245, and E 1383); s is the standard deviation; and n is the number of measurements.  

The relative accuracy, RA, of a measurement is determined by:

% RA = 95% CI / X x 100        

where X is the mean value. In general, a relative accuracy of 10% or less is considered to be satisfactory.  
So far, we have discussed measurements on a single plane-of-polish on one specimen. Because we are usually dealing with large quantities of material (such as an entire “heat” of metal or alloy, a large heat-treatment lot of forgings or a large forging or casting), a single specimen may not be representative of the whole quantity. Ideally, random sampling of a large batch would be best, but practical considerations usually rule this out.  

In most cases, sampling is done at predetermined convenient locations, such as the extreme ends of a coil, bar, plate, etc. or at locations that will be subject to extensive marking. In some cases, excess metal is added to a forging or casting to provide test material as similar as possible to that of the component. Sampling is often a compromise and is rarely excessive due to cost considerations. However, inadequate sampling or sampling on non-representative material/locations may degrade the value of the measurements.  
You must login or register in order to post a comment.



Image Galleries

2013 Product Roundup

The Product Roundup is a showcase of some of the best products and technologies the thermal-processing industry has to offer.  Industrial Heating has rounded up these advanced, energy-efficient and cost-effective items in one special section  for easy reference.


The Heat Treat Doctor, Dan Herring, and IH Editor Reed Miller get together each month to talk technical. July’s podcast features a discussion about exothermic atmospheres. Sponsored by:

More Podcasts

Industrial Heating

Cover Image

2014 July

July's issue of Industrial Heating features a look into the changes that are coming to EMF Regulators, as well as a story detailing the Houston Heat Treat.

Table Of Contents Subscribe

Website Sections Poll

What section of our website have you visited most frequently?
View Results Poll Archive


Everyday Metallurgy

If you have ever wished there was something people could read to help them better understand what you do, this is the book for you.

More Products

Clear Seas Research

CS-OflRGB1.gifWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

Employment Marketplace

Employment Marketplace


Updated FacebookTwitter imageYoutube IconLinkedin Icon