Combustion Concepts / Commentary/Columns

Available Combustion Heat

April 4, 2013
/ Print / Reprints /
/ Text Size+

Much of the heat produced by fuel combustion is unavailable for productive use. Figure 1 shows the flow of product and heat for a typical process. Previous columns showed that hot offgas contains much of the combustion heat, while a lesser but still significant amount is lost through the walls of the furnace.[1,2] Only the remaining heat is available for raw-material processing. A main objective of combustion management is to maximize the available heat. Here, we define the gross available heat is the heat of combustion minus the heat carried out in the offgas, while the net available heat is the gross available heat minus the heat loss. Both are expressed as a percent of the combustion heat.



     This article shows how to calculate the % available heat using methane as fuel and an excess of dry normal air as the oxidant. Details are in the downloadable Excel workbook AvailableHeatCalc.xlsx, which accommodates different natural gas compositions and oxygen enrichment of the air. This workbook uses the data and calculation techniques developed in earlier Combustion Concepts workbooks.

    We start by collecting data on the heat of methane combustion and the HT-H25 values of the offgases. A previous Excel workbook[3] gives DH°comb for CH4 at 25°C = -802.3 kJ/g-mole for H2O(g) as the combustion product and -890.4 for H2O(l). Table 1 shows the heat-content-equation parameters from the FREED database[4] for the product gases in J/g-mole for Celsius temperature.


Calculation Procedure

A material balance is used to calculate the amount of reactants and products over a large range of percent excess air. On a basis of one g-mole of methane burned, AvailHeatCalc.xlsx shows that the air/NG ratio varies from 9.52-19.05 as the air varies from stoichiometric to 100% excess. For example, at 40% excess air, 13.33 g-mole of air are required, with 3.81 moles in excess of stoichiometric.

    A heat balance is used to calculate the heat content of each combustion product. The first step is to select an offgas temperature and use it in the Table 1 formulae to calculate the species molar heat content. We then multiply the species amount by its molar heat content to get its heat content and repeat this for each species to get the heat content for the entire 14.33 moles of offgas. This was done for 800°, 900° and 1000°C. The gross available heat is the algebraic combination of DH°comb for CH4 at 25°C and HT-H25 for the offgas. The % available heat is the available heat value divided by the DH°comb for CH4 at 25°C (either -802.3 or -890.4). The latter value gives an artificially low value of % available heat because industrial processes never produce H2O(l) as a combustion product.



Figure 2 shows the benefit of minimizing the extent of excess air to maximize the available heat. Equation 1 gives the statistical results of a correlation between the two variables, where T is the offgas temperature in Celsius and H2O(g) is the combustion product.

% Gross Available Heat = (-0.00040T + 0.033)(%XS air) – 0.049T +104.9    [1]


    The downloadable worksheet at has additional descriptive text on natural gas combustion, source of all data and complete material-balance values. Goal Seek can be used for what-if calculations, such as seeking the adiabatic flame temperature. A similar program, BurnerCalc.xlsx,[4] includes oxidant humidity, oxidant temperature and NG temperature as process variables. IH



1. Arthur Morris, “Making a Heat Balance,” Industrial Heating, December 2012

2. Arthur Morris, “Making a System Balance (Part 1),” Industrial Heating, February 2013

3. Arthur Morris, “Calculating the Heat of Combustion for Natural Gas,” Industrial Heating, September 2012


Did you enjoy this article? Click here to subscribe to Industrial Heating Magazine 

Recent Articles by Art Morris

You must login or register in order to post a comment.



Image Galleries

2013 Product Roundup

The Product Roundup is a showcase of some of the best products and technologies the thermal-processing industry has to offer.  Industrial Heating has rounded up these advanced, energy-efficient and cost-effective items in one special section  for easy reference.


The Heat Treat Doctor, Dan Herring, and IH Editor Reed Miller get together each month to talk technical. July’s podcast features a discussion about exothermic atmospheres. Sponsored by:

More Podcasts

Industrial Heating

Cover Image

2014 July

July's issue of Industrial Heating features a look into the changes that are coming to EMF Regulators, as well as a story detailing the Houston Heat Treat.

Table Of Contents Subscribe

Website Sections Poll

What section of our website have you visited most frequently?
View Results Poll Archive


Everyday Metallurgy

If you have ever wished there was something people could read to help them better understand what you do, this is the book for you.

More Products

Clear Seas Research

CS-OflRGB1.gifWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

Employment Marketplace

Employment Marketplace


Updated FacebookTwitter imageYoutube IconLinkedin Icon